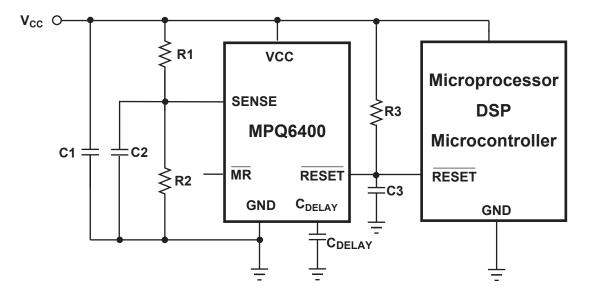


DESCRIPTION

The MPQ6400 family is the microprocessor (µP) supervisory circu it which can monitor and provide reset function for system voltages from 0.4V. Whe n either the SENSE voltage falls below its t hreshold (V_{IT}) or the voltage of manual reset (MR) is pulled to a logic low, the RESET signal will be a sserted. The r eset voltage can be factory-set for standard voltage rails from 0. 9V to 5V, while the MPQ6400DG-01 reset voltage is adju stable with an external resistor divider. When SENSE volt age and MR exceed their thresholds, RESET is driven to a after a user-programmable delay logic high time.

The MPQ6400 has a very low quiescent current of 1.6µA typically, which makes it ideal suitable for battery-powered application s. It provides a precision re ference to achieve $\pm 1\%$ threshold accuracy. The reset delay time can be select ed by a capacitor which is connect ed between C_{DELAY} and GND, allowing the user to select any delay time from 2.1ms to 10s. 380ms delay time is selected by connecting the C_{DELAY} pin to V_{CC}, while 24ms delay time by leaving the C_{DELAY} pin float. MPQ6400 is available in 2mm×2mm 6-pin QFN package.

TYPICAL APPLICATION

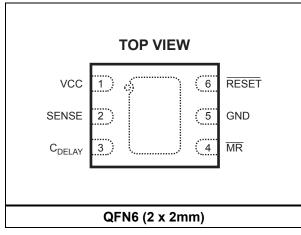

FEATURES

- Guaranteed Industrial/Automotive Temp Range Limits
- Fixed Threshold Voltages for Standard Voltage Rails From 0.9V to 5V and Adjustable Voltage From 0.4V are Available
- Low Quiescent Current: 1.6µA Typ
- Power-On Reset Generator with Adjustable Delay Time: 2.1ms to 10s
- High Threshold Accuracy: ±1% Typ
- Manual Reset (MR) Input
- Open-Drain RESET Output
- Immune to Short Negative SENSE Voltage
- Guaranteed Reset Valid to V_{CC}=0.8V
- 2×2mm QFN

APPLICATIONS

- DSP or Micro controller Applications
- Laptop/Desktop Computers
- PDAs/Hand-Held Products
- Portable/Battery-Powere d Products
- FPGA/ASIC Applications

For MPS green status, please visit MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.


ORDERING INFORMATION

Part Number* Package		TJ
MPQ6400DG-33**	QFN6 (2x2mm)	-40°C to +125°C
MPQ6400DG-33-AEC1	QFN6 (2x2mm)	-40°C to +125°C

*For Tape & Reel, add suffix –Z (e.g. MPQ6400DG–XX-Z); For RoHS compliant packaging, add suffix –LF (e.g. MPQ6400DG–XX-LF–Z).

** Check factory for availability in other options.

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)

$\begin{array}{l} Supply \mbox{ Voltage } V_{CC} \hfill \\ C_{DELAY} \mbox{ Voltage } V_{CDELAY} \hfill \\ SENSE \mbox{ Voltage } V_{SENSE} \hfill \\ All \mbox{ Other Pins} \hfill \\ RESET \mbox{ Current } I_{RESET} \hfill \\ \end{array}$.3V to V _{CC} + 0.3V 0.3V to 6V 0.3V to +6.0V
Continuous Power Dissipation QFN6 (2mmx2mm) Junction Temperature Lead Temperature Storage Temperature	(T _A = +25°C) ⁽²⁾ 2.5W 150°C 260°C

Recommended Operating Conditions ⁽³⁾

Supply Voltage V _{CC} .		1.8V	to 5.5V
Maximum Junction 7	Гетр. (Т _Ј)		+125°C

Thermal Resistance ⁽⁴⁾ **θ**_{JA} **θ**_{JC} QFN6 (2x2mm)50 12...°C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature r T J(MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D(MAX)=(T_J(MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Inter rnal thermal shutdo wn circuitr y protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7 4-layer board.

ELECTRICAL CHARACTERISTICS

1.8V≤V_{CC}≤5.5V, R₃ = 100k Ω , C₃ = 47pF, T_J= -40°C to +125°C, Typical values are at T_j=+25°C, unless otherwise noted.

Parameters Sy	mbol	Condition	Min	Тур	Мах	Units
Input Supply Range	Vcc		1.8		5.5	V
Supply Current	I _{CC}	V_{CC} = 3.3V, RESET not asserted. MR, RESET, C_{DELAY} open	1.6		5	μΑ
(current into V _{CC} pin)	ICC	V_{CC} = 5.5V, RESET not asserted. MR, RESET, C _{DELAY} open	1.85	1	5	μΑ
Low-level Output Voltage		$1.3V \le V_{CC} < 1.8V,$ $I_{OL} = 0.4mA$			0.3	V
	V _{OL}	$1.8V \le V_{CC} \le 5.5V$, $I_{OL} = 1.0mA$			0.4	V
Power-up Reset Voltage ⁽⁵⁾		V _{OL} (max) = 0.2V, I _{RESET} = 15uA T _{rise(Vcc)} ≥15µs/V			0.8	V
Negative-going Input Threshold	N/	-40°C to +85°C	-2.5	±1.0	1.5	0/
Accuracy ⁽⁷⁾	V _{IT}	-40°C to +125°C	-3		1.7	%
Hysteresis on V _{IT} Pin	V_{HYS}			1.5	4	V _{IT} %
MR Internal Pull-up Resistance	$R_{\overline{MR}}$	50		110		kΩ
Input Current at SENSE Pin	I _{SENSE}	Fixed versions V _{SENSE} = 6V	2.4			μA
RESET Leakage Current		$V_{\overline{\text{RESET}}}$ = 5.5V, $\overline{\text{RESET}}$ not asserted			500	nA
MR Logic Low Input	VIL				0.25V _{CC}	V
MR Logic High Input	V _{IH}		0.7V _{CC}			V
SENSE Maximum Transient Duration	t _w	V _{IH} = 1.05 V _{IT} , V _{IL} = 0.95 V _{IT}	17.5			μs
		C _{DELAY} = Open	15	24	34	ms
	t _d	$C_{\text{DELAY}} = V_{\text{CC}}^{(6)}$	230	380	530	ms
RESET Delay Time	La	$C_{\text{DELAY}} = 150 \text{pF}$	1.3	2.1	3	ms
		$C_{\text{DELAY}} = 10 n F^{(6)}$	61	102	142	ms
MR to RESET Propagation Delay	t_{pHL1}	$V_{\text{IH}} = 0.7 V_{\text{CC}},$ $V_{\text{IL}} = 0.25 V_{\text{CC}}$	160			ns
High to Low Level RESET Delay, SENSE to RESET	t _{pHL2}	$\label{eq:VIH} \begin{array}{l} V_{IH} = 1.05 \; V_{IT}, \\ V_{IL} = 0.95 \; V_{IT} \end{array}$	17.5			μs

Note:

5) The lowest supply voltage (V_{cc}) at which RESET becomes active.

6) Guaranteed by design.

7) V_{SENSE} Falling Slowly

ORDERING INFORMATION

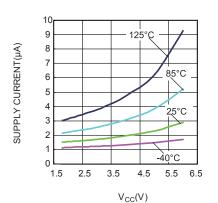
Product	Package	Top Mark	Nominal Supply Voltage	Threshold Voltage (VIT)
MPQ6400DG-33	QFN		3.3V	3.07V

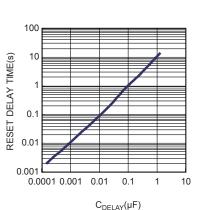
PIN FUNCTIONS

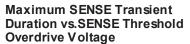
QFN Pin #	Name D	es cription
1 V	CC	Supply voltage. A 0.1uF decoupling ceramic capacitor should be put close to this pin.
2 SEI	NSE	SENSE pin is connected to the monitored system voltage. When the monitored voltage is below desired threshold, $\overline{\text{RESET}}$ is asserted.
3	C _{DELAY}	Programmable re set del ay time pin. Whe n C _{DELAY} c onnected to V _{CC} throug h a re sistor between 50k Ω and 200k Ω , a 380ms de lay time is selected. Wh en C _{DELAY} floated, the delay time is 24ms. A capacitor bigger than 150pF connected C _{DELAY} to GND could be used to get the user's programmable time from 2.1ms to 10s.
4	MR	The manual reset ($\overline{\text{MR}}$) can introdu ce a nother lo gic signal to control the $\overline{\text{RESET}}$. It is internally connected to V _{CC} through a 90k Ω resistor.
5	GND	Ground.
6	RESET	\overrightarrow{RESET} is an open drain signal which will be asserted when the SENSE voltage drops below a preset threshold or when the manual reset (\overrightarrow{MR}) pin drops to a logic low. The \overrightarrow{RESET} delay time is programmable from 2.1ms to 10s by using external cap acitors. A pull-up re sistor bigger than 10k should be connected this pin to su pply line, and the \overrightarrow{RESET} outputting a higher voltage than V _{CC} is allowable.

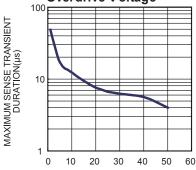
DETAIL DESCRIPTION

The MPQ6400 product fam ily asserts a RESET signal whe n either the SENSE pin voltage is lower than V_{IT} or the manual reset (\overline{MR}) is driven low. The MPQ6400-XX fa mily, o ther than the MPQ6400DG-01, can monitor a fixed voltage from 0.9V to 5.0 V. The MPQ6400DG-01 can monitor any voltage above 0.4V by adjusting the external resistor divider. After both the manual reset (\overline{MR}) and SENSE voltages exceed their thresholds, the RESET

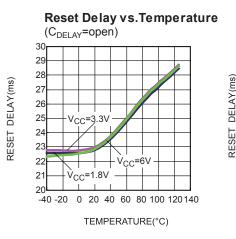

output re mains asserted for a user 's programmable delay time. Two fixed \overrightarrow{RESET} delay times are user-selectable: 380m s d elay time by connecting the C_{DELAY} pin to V_{CC}, and 24ms delay time by leaving the C_{DELAY} pin floa t. Any delay time from 2.1ms to 10s could b e gotten by connecting a capacitor between C_{DELAY} and GND. The wide m onitor voltage and p rogrammable reset delay time make MPQ6400 product fam ily suitable for a broad array of applications.

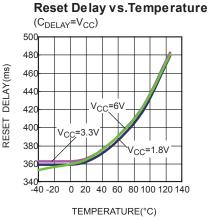

Reset Delay Time vs. CDELAY

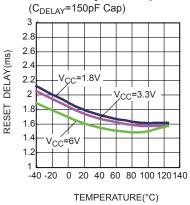

TYPICAL PERFORMANCE CHARACTERISTICS


 V_{CC} =3.3V, R_3 = 100k Ω , C_3 = 47pF, T_A = -40°C to +125°C, Typical values are at T_A =+25°C, unless otherwise noted.

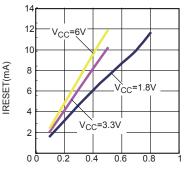
Supply Current vs. V_{CC}







SENSE THRESHOLD OVERDRIVE(%)

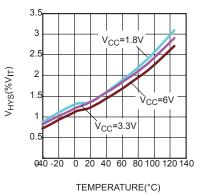


Reset Delay vs.Temperature

IRESET VS. LOW LEVEL Reset Voltage

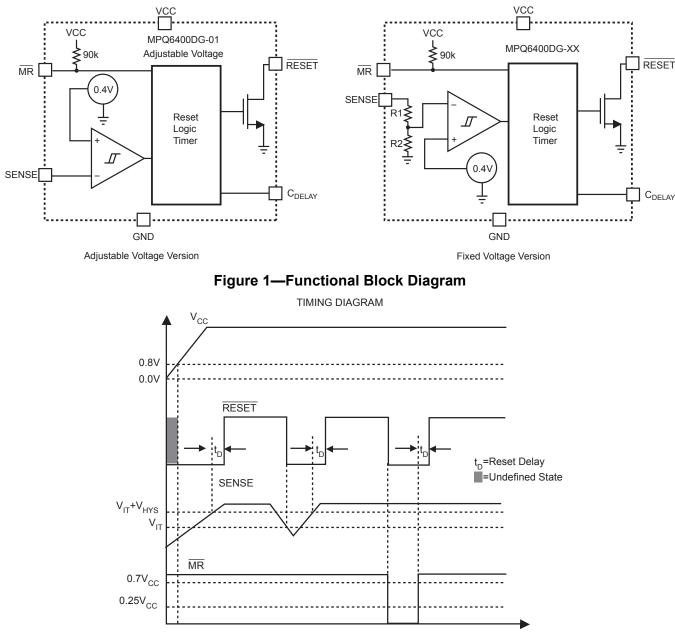
LOW LEVEL RESET VOLTAGE(V)

Temperature 0.2 0.1 V_{CC}=1.8V 0 -0.1 -0.2 V_{CC}=́6V -0.3 -0.4 V_{CC}=3.́3\ -0.5 -0.6 0 20 40 60 80 100 120 140


TEMPERATURE(°C)

VORMALIZED VIT (%)

-40 -20

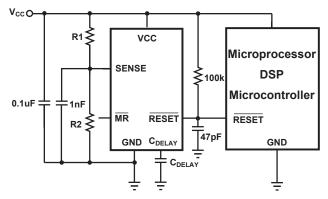

Normalized VIT vs.

V_{HYS} vs. Temperature

MPQ6400 Rev. 1.0 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. 12/5/2011 © 2011 MPS. All Rights Reserved.

FUNCTIONAL BLOCK DIAGRAM

Time

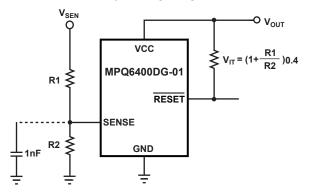

MR	SENSE > V _{IT}	RESET	
L	0	L	
L	1	L	
Н	0	L	
Н	1	Н	

TRUTH TABLE

APPLICATION INFORMATION

Reset Output Function

The M PQ6400 RESET output is typically connected to the \overline{RESET} input of a microprocessor, as shown in Figure 3. When RESET is not asserted, a pull up resistor must be connected to hold this signal high. The voltage of reset signa I is allowed to be high er than V $_{CC}$ (up to 6 V) through a r esistor pulling up from supply line. If the voltage is below 0.8V, **RESET** Output is undefined. This co ndition ca n be ign ored generally because that most microprocessors do not function at this state. When both SENSE and MR are higher than their threshold voltage, RESET output hold s logic high . Once eith er of the tw o drops belo w their th reshold, RESET will be asserted.


Figure 3—Typical Application of MPQ6400 with Microprocessor

From the p oint that \overline{MR} is again logic high a nd SENSE is above V $_{IT} + V _{HYS}$ (the threshold hysteresis), \overline{RESET} will be driv en to a logic high after a re set delay tim e. The re set delay time is programmable by C $_{DELAY}$ pin. Due to the finite impedance of \overline{RESET} pin, th e pull up resistor should be bigger than $10k\Omega$.

Monitor a Voltage

The SENSE input pin is conn ected to the monitored system volta ge directly or through a resistor network (on MPQ6400DG-01). When the voltage on the pin is below V_{IT}, $\overrightarrow{\text{RESET}}$ is asserted. A threshold hysteresis will prevent the chip from responding perturbation on SENSE pin. A 1nF to 10nF bypass capacitor should be put on this pin to increase its im munity to noise. A t ypical application of the M PQ6400DG-01 is shown in Figure 4. T wo external resistor s form a voltage

divider from m onitored voltage to GND. Its tap connects to the SENSE pin. The circuit can be used to monitor any voltage higher than 0.4V.

Figure 4—MPQ6400DG-01 Monitoring a User-Defined Voltage

Monitor Multiple System Voltages

The m anual reset ($\overline{\text{MR}}$) can introduce another logic signal to control the RESET. When $\overline{\text{MR}}$ is a logic low (0.25V_{CC}), RESET will be asserted. After both SENSE and $\overline{\text{MR}}$ are above their thresholds, RESET will be driven to a lo gic high after a reset delay time. The $\overline{\text{MR}}$ is internally connected to V_{CC} through a 90k Ω resistor so this pin can float. See how multiple system voltages are monitored by $\overline{\text{MR}}$ in Figure 5. If the signal on $\overline{\text{MR}}$ isn't up to V_{CC}, there will be an additional current through internal 90k Ω pull u p resistor. A logic-level FET can be used to minimize the leakage, as shown in Figure 6.

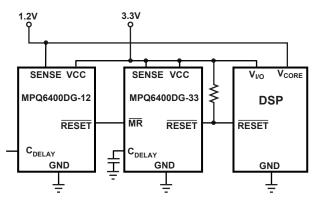


Figure 5— MPQ6400 Family Monitoring Multiple System Voltages

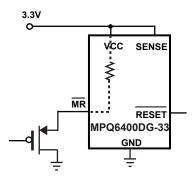
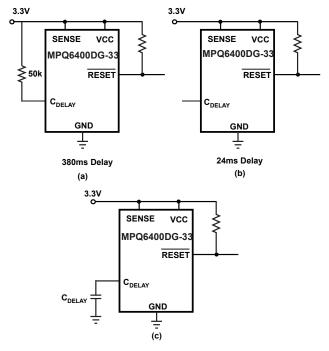
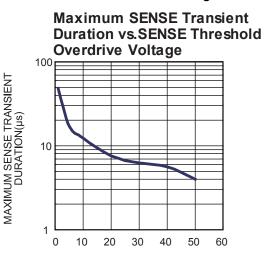



Figure 6—Minimizing I_{cc} When \overline{MR} Signal isn't over Vcc by External MOSFET

Programmable Reset Delay Time

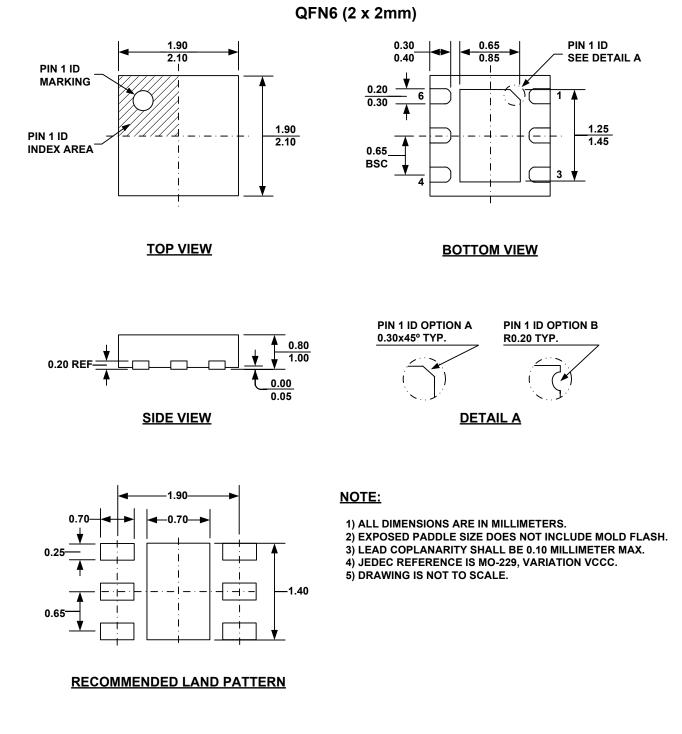
The reset delay tim e can be programmed by C_{DELAY} configure. When C_{DELAY} is connected to VCC through a resistor between 50k Ω and 200k Ω , the delay tim e is 380m s. When C_{DELAY} floated, the delay tim e is 24m s. In addition, a capacitor connected C $_{DELAY}$ to GND could be used to get the user's program mable delay time from 2.1ms to 10s. The three configures can be found in Figure 7(a)(b)(c).

Figure 7—Programmable Configurations to the Reset Delay Time


The external capacitor C_{DELAY} must be larger than 150pF. For a given d elay tim e, the capacito r value can be calculated using the followin g equation:

 $C_{\text{DELAY}}(nF) = [t_{\text{D}}(s) - 4.99 \times 10^{-4}(s)] \times 107$

The reset delay time is determined by the charge time of external capacitor. While SENSE is above V_{IT} and \overline{MR} is a logic hig h, the internal 140nA current source is enabled and star ts to charg e the capacitor to set the delay time. When the capacitor voltage rises to 1.13V, the \overline{RESET} is deasserted. The capacitor will be discharged when the \overline{RESET} is again asserted. Stray capacitance may cause errors of the delay time. A ceram ic capacitor with low leakage is strongly recommended.


SENSE Voltage Transients Immunity

The M PQ6400 can be immune to SENSE pin short negative transient. The m aximum immune duration is 17us while overdrive is 5%. A shorter negative transient can not assert the RESEToutput. The effective d uration is r elative to t he threshold overdrive, as shown in Figure 8.

SENSE THRESHOLD OVERDRIVE(%) Figure 8—Maximum Transient Duration vs. Sense Threshold Overdrive Voltage

PACKAGE INFORMATION

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Int ellectual Property rights are n ot infringed u pon when integrating MPS product s into any application. MPS w ill not assume any legal responsibility for any said applications.